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In this paper, FSO systems have been simulated using VPI simulator. We first present the simulation environment with the description of VPI components and VPI models for FSO systems considering the effect of the phase noise and intermodulation distortion. As a simulation result, we investigate the performance evaluation according to various parameters.    Keywords:	Free space optical (FSO) systems Phase noise Intermodulation distortion VPI transmission Maker © 2015 IASE Publisher. All rights reserved.
	
1.	Introduction 

* The invention of optical fibers, enabling the development of low loss and huge bandwidth communications, has opened a high speed multimedia communication era. As a result, a variety of optical networks have been introduced, which are categorized according to topologies, applications and even communication techniques. In particular, the FSO systems are well-known for covering access network by connecting metropolitan and backbone networks, managing metro-gaps, continuing various services from the backbone network (Zhu et al., 2015; Lee and Hwang, 2015). This network is especially advantageous of reducing the cost, simple structure, high security and no need to dig for installation of FSO systems. In (Lim et al., 2012, 2009), we investigated the analytical performance of the FSO systems. As aforementioned, the analysis can be used to evaluate the exact performance or provide a closed form for the error rate under given channel conditions. It is not always possible, however, to get a closed form equation from the analysis especially for the turbulence channels. In an alternative, we can rely on the simulation of a specific system to conform the analytical results, understand the characteristics of the channel or evaluate the system performance. We present the simulation methods and results of FSO systems under turbulence channels considering the effect of phase noise and intermodulation distortion (IMD) using VPI transmission Maker (The VPI transmission Maker function site). The transmitted signal undergoes the degradation factors such as phase noise and 
                                                 * Corresponding Author.  Email Address: wansu.lim@kumoh.ac.kr  

intermodulation distortion under atmospheric turbulence channels. First, the transmitted signal undergoes the effect of phase noise according to the linewidth of a laser diode in transmitter. Phase noise is the frequency domain representation of rapid, short-term, random fluctuations in the phase of a waveform, caused by time domain instabilities (jitter). Generally speaking radio frequency engineers speak of phase noise of an oscillator, whereas digital system engineers work with the jitter of a clock. Second, IMD is the unwanted amplitude modulation of signals containing two or more different frequencies, each component modulating other components, in a system with nonlinearities. This will form additional signals at frequencies that are not, in general, at harmonic frequencies (integer multiples) of either, but instead often at sum and difference frequencies of the original frequencies. IMD is caused by non-linear behavior of the signal processing being used. The theoretical outcome of these non-linearities can be calculated by conducting a Volterra series of the characteristic, while the usual approximation of those non-linearities is obtained by conducting a Taylor series. In order to simulate the FSO systems, we use the block diagram shown in Fig. 1. As we can see in the figure, the overall system is partitioned into three parts. The first is the data generation and signal modulation part where the source data is modulated corresponding to the optical modulation methods. The second is the atmospheric turbulence channel part which generates the channel noise of the fading channels with the scintillation effect. The third is the signal demodulation and detection part where the received signals are demodulated and the transmitted signals are recovered by a photo detector. 
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Fig.	11: (a) The received signal power comparison between simulation results using VPI and numerical analysis results, (b) IM3 power comparison between simulation results using VPI and numerical analysis results, and (c) SNDR comparison between simulation results using VPI and numerical analysis results  First, the trend of the average BER of the four responsivities is very similar to irrelevant to the two kind of linewidth, 10 MHz and 624 MHz. The average BER increases as the propagation length increase. For example, the average BER with propagation length of 1000 m is almost 24.14 dB better than that with 1250 m. Second, we compare the numerical analysis results considering the effect of the phase with the VPI simulation results. As a result, we confirm that two results are well matched under turbulence channels. Third, we simulate the received signal power, the IM3 power and the SNDR as a function of the propagation length with three different the scintillation strength (ܥ௡ଶ = 4 × 10ିଵସ, 6 ×10ିଵସ, ܽ݊݀8 × 10ିଵସ). As a results, we confirm that the the received signal power, the IM3 power and the SNDR with ܥ௡ଶ = 4 × 10ିଵସ is almost 4.6 dBm, 3.2 dBm and 4.4 dB better that with ܥ௡ଶ = 8 × 10ିଵସ at a given the propagation length of 1500 m, respectively. Fourth, we simulate the received signal power and the IM3 power as a function of the input RF signal power with three different responsivities (0.4, 

0.6 and 0.8). As a results, we confirm that the received signal power and the IM3 power with the responsivity of 0.8 is almost 2.7 dBm and 4.86 dBm better that with the responsivity of 0.4 at a given the input RF signal power of 10 dBm, respectively. Sixth, we compare the numerical analysis results considering the effect of the IM3 with the VPI simulation results. As a result, we confirm that two results are well matched under turbulence channels. 
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